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ABSTRACT Deep learning has recently been extensively used for crack detection in structural health 

monitoring settings. However, detecting cracks in levee systems have yet to receive considerable critical 

attention. Thus, this study presents a novel encoder-decoder-based fully convolutional neural network to 

detect cracks from levee images at a pixel level automatically. We propose that the feature learning be 

strengthened using the decoder and bottleneck feature maps by concatenating them back to the encoder blocks. 

The addition reinforcement in the U-Net-like architecture results in a loop-like structure to exploit all the 

feature maps from encoders, bottlenecks, and decoders. The proposed architecture, Iterative Loop U-Net 

(IterLUNet), outperforms the state-of-the-art architectures on the image dataset of the levee system, achieving 

an increment of Intersection over Union (IoU) by 10.32% on average for a 10-Fold Cross-Validation (FCV) 

compared to the baseline U-Net model and 11.00%, 7.65%, and 7.43%  with a range of latest models 

MultiResUnet, Attention U-Net, and Unet++ respectively. In addition, IterLUNet has at least 63% fewer 

parameters to be trained than the baseline model, thus, allowing less space consumption for pixel-wise crack 

detection in AI-based inspection of levee systems.  

INDEX TERMS Crack Detection, Deep Learning, Floodwalls, Image Segmentation, Levees

I. INTRODUCTION 

Recent deep learning methods have achieved state-of-the-art 

results on challenging computer vision problems like image 

classification, object detection, and image segmentation [1]. 

The Convolutional Neural Network (CNN or ConvNet) has 

significantly advanced deep-learning methods [2] by 

introducing three layers - the convolutional layer as a feature 

extractor, the activation layer to add non-linearity, and the 

pooling layer to maintain the spatial dimension. 

Consequently, CNN gained popularity mainly because it 

automatically extracted essential features through successive 

convolutional layers. On the grounds of components of CNN, 

Long et al. [3] proposed Fully Convolutional Network 

(FCN), a breakthrough in deep-learning-based end-to-end 

image segmentation methods without fully connected layers. 

The FCN was then extended to encoder-decoder 

architectures. The encoders in encoder-decoder architecture 

extract features from the images, and the decoders map low-

level features from encoders to an output segmentation mask 

[3-5].  

Several fully convolutional neural network-based 

architectures, FCN [3], SegNet [4], U-Net [5], MultiResUNet 

[6], Attention U-Net [7], and UNet++ [8], had been applied 

before to perform semantic or pixel-wise segmentation in 

medical imaging dataset. However, U-Net is a widely used 

encoder-decoder architecture that succeeded as the state-of-

the-art model for image segmentation tasks in medical imaging 

[5]. The commonality in the variants of U-Net-like models is 

that they have skip connections from the encoder to the decoder 

to help retrieve any spatial information lost in the down-

sampling path of the encoders. Hence, in this paper, we explore 

that the U-Net-like deep learning architectures have the 

potential to improve prediction on limited and complex 

datasets like levee crack images through two main hypotheses. 

First,  the proposed model, IterLUNet,  improves performance 

by utilizing learned features from the decoder and bottleneck 
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layer to feed the feature map back to the encoder. Secondly, U-

Net-like architectures can be made deeper without increasing 

the number of training parameters by implementing existing 

concepts in deep learning to design encoder and decoder 

blocks.  

The proposed deep learning architecture directly learns 

meaningful underlying representations of cracks from the 

image dataset. Of course, the training process requires a 

considerable amount of labeled data which is a challenge in 

flood control systems where there need to be more images with 

cracks to train and evaluate models. Paradoxically, collecting 

levee crack images is labor and time intensive.  In light of this, 

we aim to develop a deep learning architecture that can be 

trained using a small labeled dataset and assist during the field 

investigation performed through a handheld device or 

unmanned aerial vehicles. Furthermore, most deep-learning 

approaches detect cracks on concrete or asphalt surfaces, 

predominantly in civil infrastructure. Existing architectures 

have yet to address the complexities of surroundings in the 

levee system where cracks develop on the slopes, crest, 

concrete floodwalls, and areas nearby the structure. 

Currently, the inspection of the flood water control 

system is done manually. Mostly, field investigators 

physically gather or fly drones to capture images, followed 

by hours of manual checking for any faults [9, 10]. The 

current inspection method is expensive, slow, and laborious. 

Thus, this research introduces a high-performance, fully 

automated AI-based inspection solution using an encoder-

decoder-based fully convolutional neural network 

architecture to detect cracks from the levee images. 

Therefore, in this study, the U-Net model is further improved 

to address the limitation and intricacies of the levee crack 

dataset. The contributions of the proposed model in this paper 

can be summarized as follows: 

▪ With the underlying hypothesis that decoder and 

bottleneck outputs can reinforce the model's learning, 

we propose Iterative Loop U-Net (IterLUNet), an 

encoder-decoder and a decoder-encoder combined 

deep learning model with three different high-

performing model components.  

▪ We present that the U-Net-like architectures can be 

constructed deeper and broader to extract relevant 

features without compromising on the model's size by 

deliberately including powerful contemporary deep-

learning concepts. 

• We propose a new benchmark dataset for performing 

image segmentation on levee crack images. 

II. RELATED WORKS 

The primary purpose of pixel-wise segmentation in this study 

is to separate crack pixels from non-crack pixels to accurately 

locate cracks in the levee from images and measure their size, 

provided the scale of the image. A considerable volume of 

literature has been published on automatically detecting 

cracks, ranging from U-Net architecture [11] to several 

variations of U-Net [11-24]. These approaches have a 

symmetrical contracting-expansive path with skip-

connections concatenating encoder and decoder feature 

vectors. Likewise, Zou et al. [24] developed DeepCrack, a 

SegNet-like architecture, to demonstrate the utilization of 

multi-scale convolutional features for better results and 

model convergence. In DeepCrack, encoder and decoder 

outputs are connected to build a single-scale fused feature 

map. The hierarchical feature maps are combined to produce 

a multi-scale fusion map which is further used to compute 

loss and the final output mask.  

Lately, detecting cracks in the levee system has gained 

interest [25] by using object detection methods. The authors 

in [25] analyzed machine learning and deep learning-based 

techniques and suggested a lightweight stacking-based model 

for edge devices like drones. The significant difference in this 

research is that, unlike in [25], where the authors detected a 

bounding box of cracks, the architecture developed in this 

study uses a pixel-based annotated levee dataset to perform 

semantic or pixel-level detection of cracks. Detection of 

cracks using a pixel-level approach qualifies for precise 

identification of crack regions on the levee systems, a clear 

advantage over using a bounding box approach. 

III. PROPOSED ARCHITECTURE 

The baseline architecture U-Net is symmetric because of the 

contracting path with blocks of encoder followed by max 

pooling layer to generate feature vector and expanding path 

that has blocks of decoder along with upsampling of the 

feature space. The feature vectors generated through encoder 

blocks contain fine-grained spatial information lost in the 

contracting path. So, in U-Net, the skip connections from the 

contracting path to expanding path are constructed by 

concatenating the feature vector from the encoder to the 

corresponding decoder to allow the architecture to propagate 

the spatial information from previous layers while accurately 

reconstructing the segmentation mask [5]. The fundamental 

hypothesis constructed for the architecture design of 

IterLUNet is that the higher-level features from expanding 

paths also have relevant information which could be helpful 

during training. Thus, the proposed architecture is based on 

building connections from the expanding path back from the 

decoder to the encoder to represent the complexity of cracks. 
In a deep learning model, a considerable number of 

parameters are to be tuned during the training process. It 

requires thousands of training samples for a model to learn 

from so it can generalize well on unseen data. Training deep 

learning models with many parameters from scratch is prone 

to overfitting in real-world semantic segmentation tasks 

where the annotated images are limited, less than, or in 

hundreds. Additionally, a model with a higher number of 

training parameters increases the model’s overall size, 

making it unfeasible to perform nearly real-time accurate 
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segmentation of crack pixels from the non-crack pixels. 

Hence, a depthwise separable convolution and iterative loop-

like structure are introduced to address the growing number 

of parameters and optimize the architecture to achieve higher 

performance. The decoder and bottleneck feature maps are 

iteratively concatenated to the encoder’s input at the next 

stage using simple skip connections in a U-like shape, hence 

named Iterative Loop U-Net (IterLUNet), as illustrated in 

Fig. 2. 

A.  BUILDING BLOCKS 

The primary components of IterLUNet are InitialBlock, 

Squeeze and Excitation (SE) Block, IntermediateBlock, and 

Iterative Loop Block (IterLBlock). In Fig. 1, substructure A, 

substructure B, and substructure C depict InitialBlock,  

IterLBlock, and IntermediateBlock, respectively, which are 

discussed in detail in the following sections. 

1) INITIALBLOCK 

In [26], the authors show that the structure of an inception 

module with factorized asymmetric convolutions does not 

work well in the early layers. Since IterLUNet trains on a 

small dataset, the classic convolution layer in InitialBlock 

instead of an inception module helps reduce model 

complexity. The InitialBlock has one set of 3 × 3 convolution 

with a stride of 1, followed by batch normalization and ReLU 

activation as shown in Fig. 1. substructure A. It is the initial 

convolution block used in the first encoder in every iteration 

and produces 64 feature maps. 

2) SE BLOCK 

The skip connections combine low-level and high-level 

feature maps. Therefore, it is essential to recognize and 

prioritize meaningful latent representations. Thus, the 

Squeeze and Excitation (SE) block [27] and its variant, 

concurrent channel, and spatial SE (csSE) block proposed in 

[23] are used in the architecture. The SE block Squeezes 

along the spatial domain and Excites or reweights the 

channels. The advanced version of SE, csSE, on the other 

hand, emphasizes the use of proper channels and spatial 

information. Therefore, the SE and csSE blocks in the 

architecture recalibrate the feature space spatially and 

channel-wise, which is one way to optimize the network with 

a slight increment in model complexity and computational 

cost.  

3) INTERMEDIATEBLOCK 

The IntermediateBlock is comprised of a single Depthwise 

Separable Convolution followed by a csSE block, as observed 

in substructure C of Fig. 1. In Depthwise Separable 

Convolution (DSC) layer, the two separate cascaded 

FIGURE 1. Substructure A is the standard initial convolutional block, Substructure B is the Inception-like module, IterLBlock, used in the encoder-
decoder layers of IterLUNet. and Substructure C is the intermediate block with depthwise separable convolution followed by concurrent channel and 
spatial SE block. Here, #filters represent a total number of output filters after convolution operation or average pooling. 
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operations generate latent representations of the concatenated 

intermediate feature maps. The first operation is 3 × 3 

depthwise Convolution with a stride of one, dilation of one, and 

a depth multiplier to perform channel-wise spatial convolution.  

Later 1 × 1 point-wise convolution operation with stride 

one follows batch normalization operation and ELU activation 

in the intermediate block, as shown in Fig. 1. The performance 

using ELU activation and batch normalization is a little 

enhanced and consistent compared to using ReLU activation 

mostly because ELU avoids dying ReLU problem and 

improves generalization through faster learning [28]. The DSC 

layer in the intermediate block performs similarly to the 

traditional convolution layer; however, the layer’s significant 

advantage is that it lowers the number of training parameters. 

Finally, adding the csSE block after convolution operations 

ensures that concatenated filters are relevant both spatially and 

channel-wise to add value to the performance gain of the 

model. 

 

4) ITERATIVE LOOP BLOCK (ITERLBLOCK) 

Based on second hypothesis we propose IterLBlock. The 

balance of width and height in the proposed architecture is 

accomplished by managing a number of output filters 

produced throughout the network and recalibrating the 

importance of filters for optimal performance. Accordingly, 

the convolutions of larger spatial filters are factorized while 

retaining a growing number of filters in IterLUNet. The 

proposed substructure, iterative loop block (IterLBlock), 

follows the design principles introduced in [26], factorizing 

more extensive filter-sized operations into asymmetric 

convolutions. The inception module-like substructure B has 

1 × 1, 3 × 3, and 5 × 5 convolutions, as shown in Fig. 1. The 

5 × 5 convolution operation is computationally expensive and 

slow, so it is replaced with 3 × 3 convolutions, which are 

further factorized into two asymmetric convolutions, 1 × 3  

and 3 × 1 convolution. The order of operations is illustrated 

in Fig. 1. Substructure B. After each convolution operation, 

ReLU non-linearity follows a batch normalization layer. 

After each convolution operation, ReLU non-linearity 

FIGURE 2. Proposed Iterative Loop U-Net (IterLUNet) Architecture. The loop structure allows utilization of the output feature maps of decoders and 
bottlenecks. Simple feature concatenation is used as Skip connection. Features of the original image are extracted at the beginning of each loop. 
Different blocks used in the design are illustrated in Fig. 1. 
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follows a batch normalization layer. Throughout the network, 

the batch normalization layer after each convolution adds 

regularization, reducing the need for a dropout layer, 

subsequently avoiding overfitting the model on the levee 

crack dataset. 

The substructure B operates as a feature extractor 

conceptually similar to a classic convolutional layer. As the 

network advances more in-depth, the input to IterLBlock 

eventually receives a higher-dimensional feature vector since 

features of different scales and dimensions are concatenated. 

The higher dimensional feature vector is predisposed to 

exploding during training without advanced computational 

resources. So, IterLBlock adds computational efficiency 

without compromising the model’s performance through two 

factors. Firstly, 1 × 1 convolution aims to reduce the 

dimensionality of the feature vector by compressing 

channels. The 1 × 1 convolution has made it possible to 

perform further expensive 3 × 3 and 5 × 5 convolutions for 

higher-dimensional input feature vectors. Secondly, stacking 

SE block or its variation after concatenation in the inception 

module as shown in Fig. 1. Substructure B with batch 

normalization has rectified the learning and added 

regularization in the network [29]. 

B. LOOPS AND ITERATIONS 

In IterLUNet, loops are created to support connections from 

the decoder to the encoder. As the links increase, the number 

of encoder-decoder blocks also grows, leading to three 

iterations to match output filter numbers with the baseline 

model. The initial encoder in each iteration uses InitialBlock 

with 64 output feature maps extracted from the input RGB 

image, whereas decoders and bottlenecks apply IterLBlock, as 

illustrated in Fig. 2. After the first iteration, the pooling layer 

output is concatenated with the output of the respective 

expanding path to maintain the spatial dimension of the input 

feature vector for the succeeding encoder. 

The first iteration has a simple U-like structure with one 

set of encoder-decoder blocks and a bottleneck layer of total 

filters {64, 128}. The second iteration starts exploring the 

output vector of the decoder and bottleneck layer of the first 

iteration. Immediately from the second iteration onwards, the 

number of encoder and decoder blocks increases. After that, 

IntermediateBlock accepts concatenated feature vectors as 

input. The number of output filters in the second iteration 

evolves to {64, 128, 256}. In the third iteration, pursuing the 

same idea of concatenating feature vectors, the output filter 

numbers in the contracting path become {64, 128, 256, 512}. 

Finally, 1 × 1 Conv2D represents the network’s final layer, 

which comprises convolution operation with a sigmoid 

activation function on the output of the final decoder of the 

third iteration to generate an image of the segmentation mask. 

Since the architecture is designed to predict binary 

segmentation mask, the final layer with a filter of size  1 × 1, 

having sigmoid activation and 1 channel output size, maps the 

channels to the crack and background classes. 

IV. EXPERIMENTS 

A. DATASET 

The dataset of levee crack images has been collected over the 

years by the field inspectors of the New Orleans district of the 

U.S. Army Corps of Engineers (USACE). The collected levee 

images have cracks in the levee’s crest, concrete floodwalls, 

slopes, and even on and surrounding areas of the levee 

system. It can be observed that the images have different 

shapes and sizes of cracks on diverse backgrounds and 

surroundings. Fig. 3. (a), (b), (c), and (d) is the set of sample 

images with their ground truth. The levee crack dataset was 

first introduced in [30], which comprises 1650 images, and is 

used to conduct 10-Fold Cross-Validation of the proposed 

model and compare it with the latest encoder-decoder-based 

image segmentation models. 

 We expanded the overall dataset by annotating 101 

more levee crack images using the VGG Image Annotator 

tool [31]. The tool generates a JSON file with coordinates of 

manually labeled crack regions. Eventually, the python script 

converts the coordinates in the JSON file to corresponding 

masks of the input images. Separation of training and 

independent test images was manually performed to 

distribute samples with as equal representations as possible 

in both training and test datasets. Table I represents the 

number of training and independent test images for different 

experiments. One of the main reasons for splitting datasets 

and conducting several experiments is to assess the 

robustness of the models trained on the currently available 

levee dataset and computational resources, further enabling 

the selection of models diligently. The datasets have a 

dominance of non-crack pixels over crack pixels. On average, 

only five percent of pixels in the original images are crack 

pixels, and the remaining ninety-five percent are background 

pixels. To further analyze the robustness of models, we also 

used the road crack dataset named DeepCrack, proposed by 

Liu, Yahui, et al. in their crack detection paper [22]. The 

DeepCrack test dataset has 237 images with their respective 

masks. 

FIGURE 3. (a), (b), (c), and (d) are each set of one sample image and its 
corresponding segmentation mask. 
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TABLE I 

 TOTAL NUMBER OF IMAGES SEPARATED FOR TRAIN AND TEST 

Dataset For 
Training 

Images 

Independent 

Test Images 

Augmented 

Images 

Loss Experiment 97 15 1746 

Experiment 1 55 10 1650 

Experiment 2 125 26 3750 

Experiment 3 114 21 2850 

B. PRE-PROCESSING 

A significant challenge in building a deep learning model for 

real-world scenarios is maintaining the quality of training and 

evaluation datasets. Fig. 3. shows that the sample dataset has 

diverse textures and scenes, cracks of different scales, and 

undefined boundaries. The deep learning models should be 

robust enough to generalize on such a dataset. Thus, the 

preprocessing approach included carefully selecting original 

images, generating ground truth, applying augmentation 

techniques [32], and analyzing the performance of the baseline 

method. Based on the iterative approach, images and 

augmentation techniques contributing to the model learning 

process were determined. The twenty-nine augmentation 

techniques selected include affine, elastic, and pixel-level 

transformations such as ColorJitter, GaussianBlur, 

GaussianNoise, OpticalDistortion, and ElasticTransform, to 

name a few. Through the iterative approach, we identified that 

not all augmentation techniques contribute to the learning 

process, especially on the dataset in which background pixels 

are comparatively higher than the object to segment. Therefore, 

in the sample experiment and experiment 3, only seventeen and 

twenty-four augmentations were applied to the original 

training images and masks. Additionally, augmented levee 

crack images were resized to 256 × 256 due to computational 

constraints. Table I presents the statistics of the datasets for 

each experiment. 

C. LOSS FUNCTIONS AND EVALUATION METRICS 

The choice of the loss function and evaluation metrics highly 

determines the training process and robustness of the models. 

A pixel accuracy alone cannot reflect the performance of 

segmentation models. Thus, the models were assessed based 

on the accuracy of locating crack pixels and computing overlap 

scores between a predicted mask and ground truth. Equations 

(1), (2), (3), and (4) represent Intersection over Union (IoU) for 

crack pixels, Dice Coefficient, F1 Score, and Tversky Index as 

metrics to evaluate semantic segmentation models. The Dice 

Coefficient from (2) and F1 Score from (3) acts similarly 

during binary segmentation task such as segmenting crack 

pixels from the background. Dice loss in (5), based on the Dice 

Coefficient, attempts to address the class imbalance problem 

between crack and non-crack pixels to achieve the expected 

performance, as the loss function only considers the 

segmentation region during the training process [33]. 

However, the weights for both false positive and false negative 

detections are equally distributed, which makes dice loss less 

suitable when the class imbalance in the dataset is high. 

Therefore, in the experiments, we also introduced another loss 

function based on the Tversky index, the focal Tversky loss 

function in (6), to generate a balance between precision and 

recall in highly imbalanced datasets by adjusting values of  

𝛼, 𝛽, 𝑎𝑛𝑑 𝛾 [34] 

𝐼𝑜𝑈 𝐶𝑟𝑎𝑐𝑘 =  
|𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  ∩  𝑌𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ|

|𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  ∪   𝑌𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ|
 

 (1) 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =   2 𝑥 
|𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  ∩  𝑌𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ|

|𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|  + | 𝑌𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ| 
 

(2) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃) + (𝑇𝑃 +  𝐹𝑁)
 

 (3) 

𝑇𝑣𝑒𝑟𝑠𝑘𝑦 𝐼𝑛𝑑𝑒𝑥 (𝑇𝐼)  =  
𝑇𝑃

𝑇𝑃 +  𝛼𝐹𝑁 + 𝛽𝐹𝑃)
 

 (4) 

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 =   1 −  𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  (5) 

𝐹𝑜𝑐𝑎𝑙 𝑇𝑣𝑒𝑟𝑠𝑘𝑦 𝐿𝑜𝑠𝑠 = (1 −  𝑇𝐼)𝜸  (6) 

𝐵𝐶𝐸 𝐿𝑜𝑠𝑠 =  − ( 𝑌𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎlog( 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)  

+ ( 1 −  𝑌𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ)log( 1 − 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))  

 (7) 

Here, 𝑌 predicted and Ygroundtruth represents predicted sets of pixels and 

ground truth. Likewise, TP, FP, and FN represent true positive, 

false positive, and false negative segmentation of crack pixels. 

𝛼 =  0.7  and 𝛽 =  0.3 are two parameters to penalize the model 

based on FNs and FPs, respectively, where their sum is 1. 𝛾 =

 0.75 parameter controls the non-linearity of the loss. 

 

It is evident from Fig.3. that the levee crack dataset is 

highly imbalanced since the percentage of crack pixels is less 

than that of non-crack pixels. Therefore, to understand the 

effects of different loss functions such as Dice Loss in (5),  

Binary Cross-Entropy (BCE loss) in (7), BCE Dice loss, and 

Focal Tversky loss in (6), adapted from [33], we further 

performed experiments on a sample dataset and recorded the 

evaluation metrics. 

D. EXISTING MODELS 

We compared IterLUNet to the U-Net [5] as the baseline model 

and the three advanced methods MultiResUNet [6], Attention 

U-Net [7], and UNet++ [8]. These methods implement 

encoder-decoder concepts and maintain filter numbers {32, 64, 

128, 256, 512} which are the primary reasons for comparative 

analysis. Additionally, the selected models are well established 

in medical image segmentation, where the datasets have 

irregular shapes and variable sizes of objects with noisy or ill-

defined boundaries. Table II shows all models’ total number of 

parameters and Floating-Point Operations per Second 

(FLOPs). It can be observed that the IterLUNet has seventy 
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percent fewer parameters to train on average than the base 

models. The design of the proposed model significantly 

reduces the number of training parameters because of the 

Depthwise Separable Convolution Layer (DSC). The previous 

research works indicate that DSC layers reduce the model's 

complexity by maintaining fewer parameters than standard 

CNN, as shown in Table II. 

TABLE II 

STATISTICS OF THE TOTAL NUMBER OF TRAINING AND NON-TRAINING 

PARAMETERS OF ALL ARCHITECTURES 

Models 
Trainable 

parameters 

Non-trainable 

parameters 

FLOPs 

(G) 

U-Net (M1) 7.76E+06 5.88E+02 12.11 

MultiResUNet (M2) 7.24E+06 2.45E+04 15.81 

Attention U-Net (M3) 8.90E+06 9.73E+03 17.24 

UNet++ (M4) 9.16E+06 7.30E+03 34.54 

IterLUNet (M5) 2.87E+06 1.53E+04 16.41 

E. EXPERIMENTAL SETUP 

All segmentation models were implemented using the Keras 

framework and trained on NVIDIA K80 GPU. The 

convolutional layers in each model were initialized using He 

Initialization [37] and a batch size of 4. For a 10-Fold CV, the 

models were trained to minimize binary cross-entropy with 

logits with an Adam optimizer using a batch size of 4 for 150 

epochs. The initial learning rate (LR) was 1e-3 but decayed by 

0.25 after every five epochs when the validation F1 score 

plateaued to the minimum value of 15e-6. Furthermore, early 

stopping was included to avoid overfitting during the model’s 

training for each fold set. 

For the second experiment, fifteen percent of an extended 

dataset of 3750 augmented images was used to validate and 

save the best-performing model. All models were trained to 

minimize dice loss with an Adam optimizer using a batch size 

of 4. We used an initial LR of 1e-4, which was reduced on a 

plateau by 0.15 after every five epochs until a minimum value 

of 15e-8. Finally, the model with the lowest validation loss 

over 80 epochs was saved to evaluate on independent test 

datasets. 

The loss experiments for loss functions were conducted to 

analyze the effects of loss functions on highly imbalanced 

datasets like levee crack datasets. The training samples were 

eight percent of 1750 augmented images, and the remaining 

twenty percent was used as validation data. The initial learning 

rate for the Adam optimizer is 2e-3, which decreases by fifteen 

percent after eight epochs when validation loss ceases to 

decrease till 15e-8. We trained IterLUNet, our proposed model, 

and UNet++, the best among existing models, to 150 epochs 

and saved the best model. All the best models are evaluated on 

15 independent levee crack images. 

Likewise, images and augmentation techniques were 

carefully selected in the third experiment based on the analysis 

of results from experiment 1, experiment 2, and the sample 

experiment on loss functions. The training samples were eight 

percent of 2850 augmented images, and the remaining twenty 

percent was used as validation data. Here, the Focal Tversky 

loss function was minimized using the training 

hyperparameters similar to that used in the sample experiment 

of loss functions. 

V. RESULTS 

A. 10-FOLD CV PERFORMANCE 

The trained models are evaluated using a held-out test dataset. 

The evaluation metrics - mean Io (mIoU), IoU for crack pixels, 

and F1 score (F1) for each fold were also recorded. Table III 

shows the average metrics presented in percentage ratios (%) 

of 10-Fold Cross-Validation (FCV) and hold-out test images 

for all models. The performance of the proposed architecture 

based on the metric F1 measure, on average, is 7.4% greater 

than the baseline U-Net (M1) model. 

TABLE III 

PERFORMANCE COMPARISONS OF THE PROPOSED ITERLUNET AND U-NET 

MODELS BASED ON A 10-FCV (VALID) AND A HOLD-OUT TEST DATASET (TEST) 

Models 
mIoU 

(%) 

IoU Crack 

(%) 

F1 

(%) 

M1 Valid 87.18 71.08 80.33 

M2 Valid 87.78 70.54 79.92 

M3 Valid 87.16 73.19 81.76 

M4 Valid 87.50 73.37 81.86 

M5 Valid 90.75 79.26 86.73 

M1 Test 85.86 70.13 79.70 

M2 Test 87.77 70.19 79.90 

M3 Test 86.90 72.80 81.67 

M4 Test 86.97 72.80 81.53 

M5 Test 90.06 78.91 86.64 

 Furthermore, the best-performing model from 10-FCV 

was also evaluated on an independent levee crack dataset. It is 

observed in Fig. 4 MultiResUNet (M2) detected non-crack 

pixels better than crack, regardless of the higher mIoU. Both 

Attention U-Net (M3) and UNet++ (M4) performed well on 

independent levee crack images while generating segmentation 

masks, as shown in Fig. 4. 

Nevertheless, IterLUNet consistently achieved impressive 

IoU and showed superiority in complex backgrounds over all 

the latest models. The proposed model detected the boundaries 

of the cracks more precisely, while the other models struggled 

to do so. Meanwhile, the best-performing model for each 

architecture with the lowest gap between training and 

validation dice-coefficient was selected to evaluate on an 

independent test dataset. As shown in Fig. 4, results indicate 

that pixel-wise prediction of cracks on completely independent 

test data is relatively low for all models. Every model faced 
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difficulties locating crack pixels for some images. Given the 

limited proportions of the levee crack dataset, ten independent 

test images did not represent the training and validation images 

adequately. The challenge was also due to the difference in the 

FIGURE 4. Examples from the independent levee crack test dataset from Experiment 1. Each colored column above represents a mask overlaid on the 
original image. White-colored masks are predicted segmentation masks for U-Net (M1), MultiResUnet (M2), Attention U-Net (M3), and UNet++ (M4). The 
red-colored mask is the ground truth, and the blue mask is the predicted segmentation mask by IterLUNet (M5). 
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distribution of crack regions, shapes, and background texture 

between the independent levee crack dataset and the training 

data. It requires additional original images with well-defined 

crack areas to yield a robust and high-performing model. This 

is the primary reason for performing augmentation and 10-Fold 

CV to show a need for a robust architecture that generalizes 

well on unseen levee crack images. 

TABLE IV 

EFFECTS OF LOSS FUNCTIONS ON U-NET, UNET++, AND ITERLUNET 

EVALUATED USING INDEPENDENT TEST DATASET 

Models 
Dice Coefficient 

(%) 
Precision 

(%) 
Recall 

(%) 
IoU Crack  

(%) 

M1 – A 41.29 55.99 30.84 28.16 

M1 – B 37.33 54.72 25.45 25.43 

M1 – C 36.95 59.68 25.04 24.98 

M1 -D 42.70 55.27 33.17 29.62 

M4 - A 38.61 54.88 29.63 26.00 

M4 - B 43.76 58.84 33.15 30.68 

M4 - C 40.87 56.42 31.39 27.74 

M4 - D 41.80 49.02 36.06 28.42 

M5 – A 43.80 50.52 37.33 29.94 

M5 – B 41.86 51.82 34.46 28.08 

M5 – C 45.52 54.60 38.94 31.04 

M5 - D 44.81 46.37 43.65 31.35 

Here, M1 – U-Net, M4 – UNet++, and M5 – IterLUnet are trained to minimize loss 

functions A, B, C, and D, representing BCE Loss, Dice Loss, BCE Dice Loss, and 

Focal Tversky Loss, respectively. 

B. ANALYSIS OF LOSS FUNCTIONS  

Levee crack dataset is high class imbalanced as crack pixels to 

be segmented are in a tiny percentage compared to the 

background pixels. From the analysis of the performance of 

models in 10-Fold CV and experiment 1, we observe that the 

models are learning better to classify non-crack pixels than 

crack pixels. Therefore, understanding the effect of objective 

function used during the training process appears crucial. In 

Table IV, A, B, C, and D are BCE loss, Dice loss, BCE Dice 

loss, and Focal Tversky loss, respectively. All models, U-Net 

(M1)- the base model, UNet++ (M4) - the best-performing 

model among U-Net-based models, and IterLUnet (M5) - the 

proposed model, are trained on sample data size to minimize 

these loss or objective functions. Fig. 5 illustrates a 

performance comparison between IterLUNet and UNet++ 

models trained with different loss functions. Fig. 5 also 

emphasizes that IterLUNet regularly performs well for the 

different experimental setups.  

BCE loss being distribution-based log loss, measures the 

closeness of predicted pixels with the actual pixels and 

penalizes accordingly. However, all the other loss functions are 

region-based and directly try to maximize respective 

evaluation metrics. Table IV illustrates that models trained 

using the Focal Tversky loss function provide a better balance 

of precision and recall. 

 

C. COMPARATIVE PERFORMANCE ANALYSIS 

Comparative performance analysis includes results and 

evaluation from experiment 2 and experiment 3. All 

architectures are trained on augmented images and evaluated 

with two independent test datasets. Table V shows metrics on 

the independent levee crack test datasets for experiment 2. The 

proposed model, IterLUNet, outperformed baseline 

architecture and the three latest best-performing models. We 

noticed that the increase in the number of original crack images 

and their ground truth had increased the performance of 

FIGURE 5.  Comparison of the UNet++ (M4) and IterLUNet (M5) models 
trained with different loss functions and achieved IoU Crack for each 
example of the independent test image. Each column above represents a 
mask overlaid on the original image. The red-colored mask is the ground 
truth, and the blue mask is the predicted segmentation mask by model 
trained with Focal Tversky Loss. Purple-colored, white-colored, and 
green-colored masks are predicted segmentation masks for M4 and M5 
trained with BCE loss, Dice loss, and BCE Dice loss, respectively. 
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models. Fig. 6 depicts the proposed model’s training and 

validation dice-loss and dice-coefficient curves over 80 epochs 

for experiment 2. With the trend of decreasing the gap between 

training and validation metrics, the complexity of the proposed 

model stands fit for the levee crack dataset. It also hints that 

since the dice loss value is still decreasing, increasing training 

epochs can lead to better results.  

A public benchmark dataset to evaluate road crack 

detection system, DeepCrack [22], was used to assess trained 

models on the levee crack dataset. Table V and Table VI show 

the metrics, and Fig. 8 represents a few sample results on the 

independent test dataset from out of the domain. The 

differences in predicted segmentation masks overlaid on 

original images are shown in Fig. 8. The outcomes indicate that 

IterLUNet consistently predicts cracks and has a better 

detection ability on unseen images. It can also be observed 

from Fig. 8 that the models trained on the levee crack dataset 

are robust to predict crack regions on a highly textural 

background and blurred or unclear images. Together these 

results provide insights into boundary information and the 

shapes of cracks better predicted by the proposed architecture. 

TABLE V 

PERFORMANCE OF TRAINED MODELS OF EXPERIMENT 2 ON INDEPENDENT 

LEVEE CRACK TEST DATA AND DEEPCRACK BENCHMARK TEST DATASET 

Models 
mIoU 

(%) 
IoU (%) 

P 

(%) 

R 

(%) 

DC 

(%) 

 Independent Levee Crack Test Data 

M1 61.76 28.19 61.89 38.48 41.62 

M2 63.48 24.98 64.42 31.66 36.37 

M3 61.92 28.02 61.61 39.68 41.72 

M4 62.54 29.34 59.77 39.75 43.01 

M5 62.22 32.30 59.81 45.68 47.00 

 DeepCrack Benchmark Test Data 

M1 68.32 43.68 76.70 52.14 58.75 

M2 68.20 39.53 80.52 43 53.35 

M3 68.47 42.11 70.46 52.89 56.45 

M4 68.20 45.15 77.17 54.23 60.04 

M5 66.58 49.13 75.25 61.69 64.14 

Here, P, R, and DC refer to Precision, Recall, and Dice Coefficient, 

respectively. 

The most striking finding of this experiment was that 

IterLUNet is capable of separating the region of interest even 

from the rough background, observed in Fig. 8 and Fig. 9. 

Correspondingly, because of the inception-like module 

reinforced by SE-block, IterLBlock can focus on crack regions 

witnessed in an example rows 6, 8, and 9 of Fig. 7. 

Furthermore, the proposed model has higher balanced 

precision and recall avoiding false detection of true positives 

that may result in a devastating outcome. Since a model with a 

higher recall or true positive rate is crucial in an automatic 

crack detection system, such a model can potentially diminish 

the misidentification of crack pixels leading to an AI-based 

inspection solution. 

 TABLE VI 

PERFORMANCE OF TRAINED MODELS OF EXPERIMENT 3 ON INDEPENDENT 

LEVEE CRACK TEST DATA AND DEEPCRACK BENCHMARK TEST DATA 

Models 
mIoU 

(%) 
IoU (%) 

P 

(%) 

R 

(%) 

DC 

(%) 

 Independent Levee Crack Test Data 

M1 60.28 28.38 60.05 37.18 41.14 

M2 59.08 22.71 62.08 27.70 33.58 

M3 61.83 30.35 58.41 45.10 43.03 

M4 61.20 30.87 61.00 41.99 43.82 

M5 60.15 35.11 49.39 53.88 48.75 

 DeepCrack Benchmark Test Data 

M1 64.02 42.34 72.88 42.34 56.60 

M2 64.62 37.42 85.18 37.36 51.09 

M3 65.61 45.46 68.38 59.96 59.60 

M4 65.75 45.93 74.09 55.11 60.34 

M5 68.14 57.34 71.74 74.62 70.85 

Here, P, R, and DC refer to Precision, Recall, and Dice Coefficient, 

respectively. 

FIGURE 6.  Dice-losses and dice-coefficients for IterLUNet at each epoch 
for training and validation dataset of experiment 2. 
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FIGURE 7. Examples from the independent levee crack test dataset of Experiment 3. Each column above represents a mask overlaid on the original 
image. White-colored masks are predicted segmentation masks for U-Net (M1), MultiResUnet (M2), Attention U-Net (M3), and UNet++ (M4). The red-
colored mask is the ground truth, and the blue mask is the predicted segmentation mask by IterLUNet (M5). 
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FIGURE 8. Examples from the independent DeepCrack Benchmark test dataset of Experiment 3. Each column above represents a mask overlaid on the 
original image. White-colored masks are predicted segmentation masks for U-Net (M1), MultiResUnet (M2), Attention U-Net (M3), and UNet++ (M4). The 
red-colored mask is the ground truth, and the blue mask is the predicted segmentation mask by IterLUNet (M5). 
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V. CONCLUSION 

This paper experimentally established that expanding the path 

of an encoder-decoder architecture by connecting the decoder 

and bottleneck outputs back to the encoder increases model 

performance. We also demonstrated that an inception-like 

module, using only informative channel and spatial features 

through squeeze and excitation block variations, enhances the 

model’s ability to focus on regions to detect. Therefore, we 

proposed an encoder-decoder-based fully convolutional neural 

network architecture, IterLUNet, to automatically detect cracks 

on the levee using a pixel-wise segmentation approach. 

Additionally, a benchmark dataset with levee crack images and 

corresponding ground truth segmentation masks was also 

introduced, which resulted in a substantial increase in Dice 

Coefficient and IoU, validating our hypotheses experimentally. 

The proposed architecture outperformed all the advanced 

architectures in terms of 10-Fold CV metrics and metrics on 

independent test datasets despite having nearly 63% fewer 

training parameters. Thus, the proposed concept helps improve 

overall IoU across semantic segmentation tasks. Availability of 

code and data here. 
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