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An imitation learning-based routing of surface ships
Pujan Pokhrel, Elias Ioup, and Mahdi Abdelguerfi

Abstract—This paper introduces a Threshold Relaxation algo-
rithm to iteratively reduce the threshold of machine learning
algorithms in reinforcement learning algorithms trained in a
supervised manner to solve shortest-path vessel routing problems.
Since we utilize Graph Neural Networks to model the data, our
method generalizes to different graph sizes. Our experiments
are performed on real-world data using the predicted fields from
Climate Forecast System Reanalysis (CFSR) hindcasts.

First, we calculate the edge weights using the resistance estima-
tion from wave heights. The node constraints are considered by
only taking the safe nodes while generating the problem domain.
We then use various features related to the edge weights, depth,
and neighbors to train a machine-learning algorithm using an
imitation learning procedure. The machine learning framework
used in this study is built using the Diffusion Convolution
Layer (DCL) and the Graph Attention Layer (GAL). Next,
we introduce a Threshold Relaxation (TR) scheme to relax the
classifier while solving the learning-to-rank problem, which is
especially applicable in the case of shortest-path problems. The
resulting model optimizes the fuel-efficient, safe route within a
8.4% Optimality Gap while only exploring an average of 65.2%
of the total nodes.

Index Terms—Imitation Learning, Ship Routing, Shortest Path
Problem, Threshold Relaxation.

I. INTRODUCTION

In this paper, we study the prediction of a fuel-efficient
path for marine surface vessels sailing from one location to
another under a dynamic surface ocean gravity-wave field that
constrains the vessel’s motion. Pokhrel et al. have previously
explored the improved wave forecasts using Climate Forecast
System Reanalysis (CFSR) hindcasts in the context of machine
learning data assimilation [1]. The geographical properties
(land/islands in oceans) give rise to constraints that stay the
same for all planning periods, while the wave effects are
dynamic and change depending on the weather.

Several approaches have been previously investigated for
path planning for marine voyages. The approaches can be
divided into four types: a) optimal control problem formulated
on a graph using dynamic programming methods [2], b)
heuristic search schemes like A∗ algorithm [3] and Rapidly-
exploring Random Tree (RRTs) [4–6], c) nonlinear convex
optimization [7–10] or evolutionary algorithms [11] d) re-
inforcement learning approaches that use reward function
for task completion and enforce penalties for unsafe state
exploration [12, 13].
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There is an increasing trend towards applying deep learning
approaches to automatically discovering heuristic algorithms
that can solve vessel routing problems [12, 14–16]. This
trend is motivated by the non-generalizability of heuristic
algorithms which require substantial trial-and-error and human
experts to improve performance in terms of solution quality.
Statistical approaches allow the trained network to generalize
on problems that share similar structures but differ only in
data and follow an equal distribution. Moreover, the use of
reinforcement learning (RL) approaches allows the model to
discover underlying patterns from a problem class, which can
be used to develop alternative algorithms that are better than
the human-designed ones. Reinforcement learning algorithms,
however, take a long time to train since the model needs to take
action and then observe the rewards to improve performance
[17, 18]. Imitation learning approaches have been proposed to
reduce the training time of reinforcement learning algorithms.
In these approaches, the agent learns to generalize the task
using the samples generated from problems that follow similar
distribution as the ones in the training set. Graph Neural
Networks (GNN) have also been pioneered in the last couple
of decades to take advantage of the graph structure of various
datasets [19, 20]. The use of convolution, attention, and dif-
fusion layers have enabled graph/node prediction and Spatio-
temporal forecasting. These networks have shown adequate
generalizability to graphs of different sizes when the problem
distribution is the same.

We use encoder-decoder GNN architecture for combina-
torial optimization in the setting of vessel routing. In this
paper, we utilize an imitation learning framework for weather
routing of surface ships. We introduce a Threshold Relaxation
(TR) scheme that allows solving the problems close to the
minimum while exploring fewer nodes. To validate our results,
we use our framework to solve routing problems in realistic
scenarios. The rest of the paper is organized as follows. Section
II examines the related works in Branch and Bound (B&B)
problems and Ship Routing. Sections III, IV, and V show
the problem formulation, methodology, and results. Section
VI discusses the results, and Section VII concludes the paper.

II. RELATED WORK

A. Imitation learning on branch-and-bound framework

Imitation learning and supervised learning are two com-
mon approaches for learning to branch in branch-and-bound
algorithms. Balcan [21] has shown that machine learning
algorithms can be used to learn high-performing strategies to
branch and bound for a given problem set. Khalil et al. [17]
have previously used a supervised learning framework to learn
branching in the context of Mixed Integer Linear Programming
(MILP). They have used the data collected employing Strong
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Branching (SB) rules to solve the ranking problem, which is
competitive with the state-of-the-art solver. Hottung et al. [15,
22] have developed a method integrating deep neural networks
(GNN) and heuristics tree search to develop a data-driven
framework DLTS to solve search problems. Their algorithm
can achieve high performance without any problem-specific
information. Hottung et al. [22] have already shown that the
DLTS framework finds smaller gaps in optimality on real-
world datasets compared to the state-of-the-art metaheuristics
proposed by Karapetyan et al. [23]. While their model does
not require additional training data, their system performance
relies on the quality of the provided solutions.

Various studies have explored methods to learn heuristics
using imitation learning algorithms. Addanki et al. [14] and
Song et al. [24] have used learning methods to improve
neighborhood search to improve the performance of the solver.
Their technique uses a machine learning algorithm to predict
whether to select the modified variables or assign a new value
to an already selected subset of variables. Their methods,
however, are limited in that they require a feasible point at the
start to find a solution. Nair et al. and [25], Ding et al. [26]
have used tripartite graph representation to extract correlations,
constraints, and objective functions without human interven-
tion. The method by Nair et al. [25] proposes a problem posed
as predicting variable assignments as a generative modeling
problem. Their method can also generate partial assignments
to the problem at test time.

Gasse et al. [19] have proposed a Graph Convolutional
Network (GCN) based framework to learn branching rules
using imitation learning on the data generated by the SB
method. While competitive with the traditional algorithm,
their framework outperforms the other machine learning-based
approaches to the MILP problem. Gupta et al. [18] have
proposed a hybrid branching model that uses GNN at the
initial decision point and a faster predictor, like the multi-layer
perceptron in the later steps to learn effective policies. Nair et
al. [25] have used imitation learning to build a MILP branched
solver, which uses GNN in a parallel setting to decrease
computational time. They have also validated their model on
five real-life datasets to show that the machine learning method
trained on one problem can generalize to similar problems.

While there is literature on imitation learning on a branch-
and-bound framework for MILP solvers, machine learning has
not been explored for the ship routing problem.

B. Ship Routing

Dijkstra algorithm and differential equations are common
procedures used for weather routing of surface vessels. Using
the Dijkstra-based approach, Mannarini et al. [27, 28] have
devised a vessel routing system that takes weather constraints
into account for various ship types. The authors have also
extensively explored wind propulsion-based vessels. While
they consider the physical properties and the geometries, their
algorithm provides sub-optimal paths to make it faster.

In the case of the differential path planning [29], for a ship
moving from point A to point B in a strong and dynamic
environment, the Hamilton-Jacobi (HJ) equation governs the

exact reachability front with certain initial conditions and ap-
propriate boundary conditions for coastlines. The zero level set
contour of the solution of the HJ equation used in differential
path planning at t > 0 is the reachability front for a vehicle
starting from the point xA at t = 0 , and the first time t at
which the zero level set contour reaches target B, which is
the endpoint. We can then extract the exact time-optimal path
X ∗(t) from the time series of the zero-level set contours by
solving the particle backtracking ordinary differential equation
(ODE).

Mannarini et al. [27] have conducted a numerical and theo-
retical study to show that at a sufficient enough discretization
level, the solution of the graph-based approach converges to
the differential equation-based approach.

Based on the results of the study from Mannarini et al. [27],
we use Graph Neural Networks (GNN) as the machine learn-
ing method to capture various spatial dependencies. Moreover,
to capture temporal dependencies, we use Gated Recurrent
Layers [30] and Graph Attention Layers [20]. We formulate
the routing problem as a Constrained Markov Decision Pro-
cess (CMDP), considering geographical and weather-related
constraints and removing the nodes that do not follow the
constraints from the problem space. While various constraints
related to the safe reachability of the vessel to the endpoint
are used, they are general and only depend on the bulk wave
parameters and a limited set of measurements of the ship.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. Constrained Markov Decision Process (CMDP)

We consider the problem of finding an optimal policy in a
finite horizon Constrained Markov Decision Process (CMDP)
subject to various constraints. A finite horizon CMDP is a
tuple (S ,C ,A,T ,R, γ, s0 ,n, δ) where

• S refers to a set of states.
• C ⊆ S is a set of safe states that satisfy the mission

constraints.
• A is a set of actions.
• T : S ×A× S → [0 , 1 ] is a stochastic function indicat-

ing state transition.
• R : S ×A× S → R is a reward function while moving

from one state to another.
• γ ∈ [0 , 1 ] is a discount factor.
• s0 ∈ C is the initial state.
• n is the planning horizon.
• δ : R → [0 , 1 ] is a risk bounding function that gives the

maximum acceptable probability of entering a failure
state as a reward function.

If we denote a state at step t as st , the state his-
tory from time step t to t

′
can be represented as

ht:t′ = (st , at , st+1 , at+1 , ..., st′ ). We denote the set of all
possible state histories as H , and the set of all possible state
histories with only safe states as HC . Similarly, a policy
π : S → P(A) can be defined as the mapping from the
state space to the space of the probability distribution over
the actions, with π(a|s) denoting the probability of selecting
action a at state s . We use two policies. i.e., branching and
pruning policies (πS and πP ) in this work.
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The objective of the problem is to select a pol-
icy πθ that maximizes the discounted cumulative reward
J π
R = Er πθ

[
∑∞

t=0 γtR(st , at , st+1 ] while satisfying the con-
straints J π

Ci
[
∑∞

t=0 γtCi(st , at , st+1 ]. Since the wave forecasts
are supposed to perfectly represent the environment, only the
nodes that satisfy the constraints are chosen for the initial
search in problem space. Formally, we can represent the
problem as

maxθJ
πθ

R (1)

subject to environmental constraints defined in the next sub-
section.

Table I
VARIOUS TERMS USED IN THE CONSTRAINTS

Symbol Name units Value

λ wavelength m -
L length at waterline m 16.2
Hs significant wave height m -
TR ship natural roll period s 9.8
α ship heading direction relative to wave rad -

TW peak wave period s -
Fr froude number - 0 .52v√

g0L

Description of various parameters used in this study. In the above table, m
refers to meters, s refers to seconds, and rad refers to radians.

B. Environmental Constraints

We use various weather-specific constraints to account for
the hazardous conditions encountered by the ship during the
voyage, which are mainly caused by the ocean waves. The
description of the various variables used in this subsection
can be found in Table I. We use the following constraints in
this paper:

0.8 ≤ λ/L ≤ 2 (2)

0.8|TE | ≤ TR ≤ 2.1|TE | (3)

1/40 ≤ Hs/L ≤ 1/25 (4)

|π − α| ≤ π/4 (5)

1.3TW ≤ vcos(π − α) ≤ 2.0TW (6)

Fr.cos(π − α) ≥ Frcrit (7)

where the critical Froude number is given by

Frcrit = 0.2324(Hs/λ)
−1/3 − 0.0764(Hs/λ)

−1/2 (8)

We refer the readers to Mannarini et al. for the detailed
description on the calculation of the variables.

C. Calculation of Fuel Cost

Since the function that calculates the ship fuel cost is non-
convex, it is generally expressed in terms of resistance encoun-
tered. The parameters used in this subsection are described
in Table II. The total resistance encountered is the sum of
the resistances generated due to various environmental factors
like winds and waves. Since the waves contribute the most
to the resistance encountered by the ship, we decompose the
resulting force that hinders the ship’s motion into calm water
resistance Rc and the wave-making resistance Raw ,

RT = Rc +Raw (9)

Table II
SHIP PARAMETERS

Symbol Name units Value

Pmax maximum engine break power hp 4000
c top speed kt 16.2
L length at waterline m 69
B beam (width at waterline) m 14
T draught m 3.4
TR ship natural roll period s 9.8
GM metacentric height m 2.3
∆ displacement t 550

Description of various parameters used in this study. In the above table, m
refers to meters, s refers to seconds, t refers to tonnes, hp refers to
horsepower, and kt refers to knots.

The calm water resistance is generally calculated in terms
of dimensionless drag coefficient CT defined by the equation

Rc(v) = CT
1

2
ρSv2 (10)

where ρ refers to the sea water density and S denotes the ship’s
wet surface area. The calculation of CT is done as outlined in
International Towing Tank Conference (ITTC) 2011 [31, 32],
following the method of Holtrop [33].

Following the literature on ship resistance, a non-
dimensional resistance σaw is introduced

Raw = σaw(L,B, T, Fr)
ρg0ζ

2B2

L
φ(

L

λ
, α) (11)

where α is the angle between the wave direction and vessel
direction of advance, ζ is the wave amplitude calculated as
2 ζ = Hs .

Mannarini et al. derive the following equation for the cal-
culation of normalized non-dimensional reistance

σ̄aw = 20(B/L)−1.20(T/L)0.62 (12)

where σaw = σ̄awFr/F̄ r . and 1/F̄ r is calculated as
F̄ r = 206 .5867 (1/2 )0 .6376B−1 .2121T 0 .6247 (1/4 )1 .3611 F̄ r

Afterward, the sustained velocity v is calculated using the
formula

k3v
3 + k2v

2 − P = 0 (13)

where
k3 =

Pmax

c3
(14)

k2 = σ̄aw
1

ηF̄ r
φ0ρζ

2B2
√
g0/L3 (15)
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where g is the gravitational constant with the value of 9.81.
The python library sympy is used to optimize the equation to
find the sustained speed v .

The modified Rc and Raw are then calculated according to
the modified formula presented by Mannarini et al. [28], i.e.,

Rc = ηk3v
3 (16)

Raw = ηk2v (17)

We refer the readers to Mannarini et al. for the calculation of
φ and σaw .

IV. METHODOLOGY

This section discusses the methodology and the description
of the algorithm used in this paper. We first explain the branch-
and-bound algorithm. Then we illustrate the imitation learning
framework, the policy network, training algorithm, threshold
relaxation procedure, and the dataset used in this study.

A. Branch-and-bound algorithm

Branch-and-bound (B&B) algorithms refer to a set of algo-
rithms using a divide and conquer strategy to solve optimiza-
tion problems.

In this framework, when we optimize the function f over
a feasible set F , we divide the problem recursively into its
subsets F1 ,F2 , ...,Fp such that ∪p

i=1Fi = F . A recursion
tree is an enumeration of all feasible solutions in which nodes
are sub-problems, and the edges are partition conditions [21].
The B&B algorithm performs convex relaxation of each sub-
problem to find a lower bound llb(Fi) or the upper bound
lub(Fi) for the node and its descendants.

The B&B algorithm maintains a queue L of the active nodes.
The first node in the queue is the root. We consider a node
to be fathomed (i.e., no further exploration in the subtree) if
a) the lower bound llb(Fi) is larger than the current global
upper bound, i.e., no solution in the subtree is better than the
current solution, b) llb(Fi) = lub(Fi), i.e., B&B has found
the best solution in the current subtree, or c) The problem is
infeasible.

If the node is not fathomed, it is branched into children of
Fi and pushed to the queue L. The algorithm terminates when
the gap between the global upper and lower bound achieves a
certain tolerance level or the queue L is empty. The details of
the algorithm are also provided in the previous literature [17,
18, 21]. The algorithm for B&B is displayed in Figure 1.

B. Learning Policy for Branch and bound algorithm

The branch-and-bound algorithm has two goals: to find
the optimal solution and to prove its optimality. While the
algorithm can be run till all the nodes are visited to find
the global optimum, it is not always feasible to return the
optimal solution in a limited time since the algorithm needs
to search and prove that the rest of the solutions are worse.
The machine learning-driven framework with B&B algorithms
seeks to provide a reasonable solution within a limited time
without rigorously proving the optimality. This quick-guess
procedure makes the search process faster since the algorithm
aggressively prunes the unpromising portions of the search.

Figure 1. The branch-and-bound algorithm

The above figure displays the branch-and-bound algorithm
used in this paper. Similar figure can also be found in [21].

1) Oracle: To generate the Oracle for imitation learning
which demonstrates the desired behavior, we run the shortest-
path selection algorithm with B&B to create the training
dataset. This list of actions by Oracle seeks to demonstrate
the ideal behavior of the machine learning algorithm. Since
the perfect Oracle requires enormous computational power to
obtain the optimal sequence of expanded nodes, we design
the Oracle without proof of optimality. This procedure, as
suggested by Balcan et al. [21] requires two Oracles, i.e., node
selection Oracle π∗

S which constantly expands the node which
has a feasible set containing the optimal solution and node
pruning Oracle π∗

P which prunes the other nodes.
Our implementation of the machine learning algorithm

for the B&B algorithm focuses on selecting the nodes to
expand (explore the children) and prune (remove the node
and its children). Using the behavior cloning algorithm, we
can translate the problem of choosing the two classes into a
binary classification. We can represent the classes as prune
and expand , respectively.

2) Imitation Learning: The imitation learning framework
for branch-and-bound algorithms formulates the learning prob-
lem as a sequential decision-making process. The trajectory
consists of the sequence of states s1 , s2 , ..., sT and actions
a1 , a2 , ..., aT . The policy πθ ∈ Π maps the state S into action
π(st) = at . The state in the branch-and-bound setting is the
tree of nodes visited so far with the lower/upper bounds. The
node selection policy πS has the state space st and has the
action space at which is selected from a queue of active
nodes. The nodes selected are then expanded for the next
iteration. The node pruning policy πP predicts the class in
prune, expand given state st and the most recently selected
node. The imitation problem can be reduced to supervised
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learning where the policy takes the feature-vector description
of the state st and predicts the next Oracle action a∗

t . The
machine learning algorithm learns the expected best action
using a simple behavior cloning procedure [34].

C. Policy Network

To learn the policy πθ in Equation 1, we parameterize it as a
neural network πθ where θ refers to the trainable parameters.

1) Diffusion convolution layer : We use Gated Recurrent
diffusion convolution layers in our study [30]. Let the param-
eter tensor Θ ∈ RQ×P×K×2 = [θ]q,p where Θq,p,:,: ∈ RK×2

parameterizes the convolutional filter for the pth input and the
q th output, P refers to the dimension of features, Q refers
to the dimension of outputs, and K refers to the dimension
of the convolution filter. We can now define the diffusion
convolutional layer as:

H:,q = a(

p∑
p=1

X:,p⋆Gfθq, p, , :) for q ∈ 1, ..., Q (18)

where X ∈ RN×P is the input, H ∈ RN×Q is the output,
fθq,p,,: are the filters, ⋆G is the diffusion operator and a is the
activation function.

In order to model the temporal dependency, we utilize Gated
Recurrent Units (GRU) which model temporal relationships
from the data. Similar to Li et al. [30], we replace matrix
multiplications with the diffusion convolution, i.e.,

rt = σ(Θr ⋆ G[Xt, Ht−1] + br) (19)

ut = σ(Θu ⋆ G[Xt, Ht−1] + bu) (20)

Ct = tanh(ΘC ⋆ G[Xt, (rtḢt−1)] + bc) (21)

Ht = utḢt−1 + (1− ut)Ċt (22)

where X t , H t , r t , ut refer to the inputs, outputs, reset gate,
and update gate at time t , respectively. Similarly, ⋆G refers
to the diffusion convolution and Θr , Θu , and ΘC refer to the
parameters for the corresponding filters.

2) Graph attention layer : Graph attention layer refers to
the masked self attention applied on a graph structure [20].
We utilize two types of graph attention layers in this work
[35].

1) Type-level attention: For a node v , the hidden represen-
tation at the l th layer is h l

v . The hidden representation of the
type t of nodes can be defined as h l

η =
∑

v ′ Āvv ′h
′l
v and can

be calculated as the sum of the neighbouring node of type t
where v and v

′
refer to the selected node and its neighbouring

node, respectively. The type-level attention scores of the same
layer can now be defined as

aη = σ(µT
η [̇h

l
v||hl

η]) (23)

where µt is the attention vector for type η, || denotes concate-
nation and σ(.) refers to the activation function. The attention
weights are then normalized using the softmax function, i.e.,

aη =
exp(aη)∑

τ ′∈T exp(aη′ )
(24)

where τ is the set of nodes used for type-level attention
calculation.

2) Node-level attention: For a node v with type η and
neighbouring node v

′ ∈ Nv with a type η
′
, the node-level

attention score at the l th layer can be defined as

bvvt = σ(ϕT α̇η′ [hl
v||hl

v′ ]) (25)

where ϕ is the attention vector and h l
v is the hidden represen-

tation at node v . Similarly, v
′ ∈ Nv with type τ

′
refer to the

neighbouring node of v with type τ The attention scores are
then normalized using the softmax function, i.e.,

βvv′] =
exp(bvv′ )∑

i∈Nv
exp(bvv′ )

(26)

where Nv is the set of nodes used to calculate node-level
attention.

Softmax layer: The softmax layer transforms the node
embeddings into outputs within the range (-1, 1) using a
softmax function.

The architecture of the proposed network is displayed in
Figure 2. We use one encoder and one decoder blocks which
contain the Diffusion Layer and the Attention Layer each.
The corresponding layers in the encoder supply the outputs
to the respective layers in the decoder. The networks used in
this study use 500 hidden networks each. Dropouts are set
after each network with a value of 0.15. In the case of the
GAT network, 16 attention heads are used, and the hidden
nodes are set to 500. A greater number of hidden nodes or
attention heads are not used since very small improvements
were seen, while testing up to 2048 nodes and 24 attention
heads while the computational complexity was significantly
higher. Afterward, we use MaxPooling to collect the outputs
and a softmax function to generate predictions.

D. Training algorithm

To train the policy networks as a supervised learning prob-
lem, we use DAgger [36]. DAgger is an iterative imitation
learning algorithm that repeatedly trains the policy to make
decisions that agree better with Oracle’s decisions in the
situations encountered while running past versions of the
policy. This training procedure makes the trained algorithm
more likely to deal with situations arising during test time.
While using the trained policy on the test dataset, the optimal
node pushed into the queue has a higher ranking than other
nodes in the queue, while the non-optimal one has a lower
ranking than the rest in the queue. The non-optimal node
is then pruned with the node-pruning policy. The DAgger
algorithm is displayed in Algorithm 1.

E. Threshold Relaxation

Algorithm 2 shows the threshold relaxation procedure used
in this study. First, we train the algorithm using an imitation
learning algorithm. While the thresholds can account for
the false positives, using the static threshold means that the
threshold will have to be set to a small number so that no
positive samples are missed. Moreover, the algorithm can miss
some nodes essential to find a solution, thus being unable
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Figure 2. Encoder-Decoder architecture used in this study. The outputs are concatenated at the end and passed to the softmax function to make predictions.

Algorithm 1 Policy Learning (π∗
S , π∗

P )
1: function DAgger(a, b) ▷ The DAgger algorithm
2: for k ∈ 1, ..., N do
3: for q in the problem set Q do
4: D

(Q)
S ,D

(Q)
P → CollectExample(q , π

(k)
P , π

(k)
S )

5: DS → DS ∪D
(1)
S

6: DP → DP ∪Dq
P

7: end for
8: πk+1

S , π
(k+1
P → train classifiers using DS and DP

9: end for
10: return Best policies πk

S , π
k
P

11: end function

Algorithm 2 Threshold Relaxation (TR)
1: function TR(λ,threshold) ▷ The Threshold Relaxation

algorithm
2: λ = 0 .8
3: threshold = 0 .2
4: while end state not found do
5: threshold = threshold * λ → Relax the threshold

0.8 × original
6: end while
7: return Best policies πk

S , π
k
P

8: end function

to solve the problem. Therefore, we use an iterative scheme
in which the termination criteria is that the algorithm must
find the endpoint. For an individual problem, we start with
a threshold generated based on the number of positive and
negative samples (0.2 in this case). We then relax the classifier
threshold iteratively till the problem is solved. The Threshold
Relaxation (TR) procedure only appends the new nodes to
the queue based on the threshold and, thus, does not require
generating the problem from scratch.

F. Dataset and Features

The weather dataset used in this study is derived from
Ifremer hindcasts. The dataset has the spatial resolution of
720 × 361 where the former refers to longitudes and the
latter refers to latitudes. The study domain of this algorithm
is the Atlantic Ocean. First, the land nodes are removed
using the land-sea mask in the hindcast files. We then retain
the safe nodes using procedures described in Section III(B).
We select two random points between the nodes from the
geographical coordinates to generate the dataset. The shortest
path is computed between the two points using the heap-based
branch-and-bound implementation as an Oracle. A total of
1372 samples are developed and divided into train:validation:
test sets in the ratio (0.7:0.2:0.1). We select random dates
within the date range January 1-30, 2015, to generate the
problem domain.

The features used in this study include the significant
wave height of the node, current index, indices of the root
node and the end node, and current cost and depth. We
then normalize the features within the range [-1, 1] using
BatchNormalizations. The input graph is generated by taking
the snapshot of the resistance for the problem domain. Since
the start point and end points are selected at random, the size
of the input graph also varies according to the problem. An
example dataset used in this paper is displayed in Figure 3.

V. RESULTS

This section describes the results of the methods tested in
this study. We first compare the machine learning algorithm
to the training data, then compare the individual machine
learning layers of the algorithm for ablation study. Afterward,
we present the test data results with and without the Threshold
Relaxation. Finally, we present the result on an individual
problem to study the performance of the proposed algorithm
compared to the optimum path.
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Figure 3. Domain of the dataset. Land masks are represented by white and can’t be accessed during ship routing.

A. Training performance

We train the network for 400 epochs and measure the
performance on the validation dataset. The results obtained
are displayed in Figure 4.

Figure 4 shows the loss function of the proposed architec-
ture during the training step for 200 epochs. The value of
the loss function decreases gradually as the number of epochs
increases. This suggests that the function is learnable and the
network is able to learn the branching rules.

B. Comparison of various deep learning algorithms

This subsection compares the various deep learning methods
used in this study during the validation phase. Specifically,
the methods tried are Diffusion Convolution Layers, Graph
Attention Layers, and a combination of both. The results
obtained are displayed in Table III.

Table III shows the performance of various machine learn-
ing methods on the benchmark dataset. We can see that
the machine learning algorithm using GDF and GAT layers
outperforms the machine learning algorithms using individual
layers.

C. Results on the test dataset with and without threshold
relaxation

In this subsection, we compare the performance of the best
model, i.e., GDF+GAT, on the test problems not included
in the training process. We run one instance without the
Threshold Relaxation (TR) scheme and another without the
scheme. For the algorithm run with TR, the threshold is set
to 0.0125 so that the least number of false negatives occurs.
The results obtained are displayed in Table IV.

Analogous to the other ML-based B&B algorithms [17, 21,
25], we run the traditional Dijkstra algorithm with the same
number of nodes (65.4%) used by the ML algorithm. The Di-
jkstra algorithm run using the limited node selection can only
find the solution to 52 problems with 15.2% optimality gap.
This suggests the efficacy of the proposed method compared
to the Dijkstra algorithm in finding the solution to the vessel
routing problem even when a limited number of nodes are

explored (65.4% in our case). We also ran another experiment
in which the program terminates when the algorithm finds the
endpoint rather than after visiting all the nodes. While the OG
is 9.2% in this case, 97.4% of the total nodes need to be visited
on an average per problem. For fair comparison, we also run
the proposed method till optimality. We find that the proposed
method requires 98.3% nodes in average for optimality which
is less than 99.7% for Dijkstra algorithm. This Optimality Gap
and the node exploration ratio demonstrate that the ML-guided
approach is better when the brute-force approach of visiting all
the nodes is not desired or when calculating the edge weights
is expensive, and a quick solution is expected.

D. Results on a single problem

In this subsection, we compare and contrast the paths ob-
tained using Dijkstra shortest path algorithm, which continues
till the whole nodes are explored, and the path obtained using
the proposed algorithm. The Dijkstra algorithm is run on the
static graph in which the node weights are the resistance
encountered by the vessel due to the waves. The results of
a single problem are displayed in Figure 5.

Figure 5 shows that the path obtained using the proposed
algorithm is 1.8% longer than the optimum route. To verify
the solution is optimum in Dijkstra or other algorithms, all the
nodes must be visited, which might not be feasible in a large
problem space. However, only 14.53% of the total nodes need
to be visited by our proposed algorithm to obtain the near-
optimum path. The near-optimum path obtained while only
visiting 65.4% of the nodes demonstrates the usefulness of
the proposed algorithm for vehicle routing problems when the
total number of nodes explored is the main criterion for the
algorithm selection.

VI. DISCUSSION

This paper explores Graph Neural Network (GNN)-based
approach to learning branching rules in the branch-and-bound
framework. Assuming that the weather forecasts give complete
information, we have explored a machine learning method
that performs close to the results generated with the optimum
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Figure 4. Loss function during the training step. The figure shows that the algorithm gradually learns the function and the loss decreases as the number of
epochs increases.

Table III
DEEP LEARNING METHODS TESTED WITHOUT THE TR PROCEDURE

Method ROC AUC OG (%) Not solved (out of 138) Explored (%)

GDL 0.743 11.52 105 78.4
GAL 0.761 9.43 81 72.5

GDF + GAT 0.820 8.40 71 67.6

In the above table, GDL, GAL, and OG refer to the Graph Diffusion Layers, the Graph Attention Layers, and the Optimality Gap, respectively. Bold
represents the best value.

Table IV
PERFORMANCE ON THE TEST PROBLEMS WITH AND WITHOUT

THRESHOLD RELXATION

Method Not Solved Explored (%)

Without TR 71 67.6
With TR 0 65.4

In the above table, With TR, and Without TR refer to the algorithm run
with threshold relaxation procedure, and the algorithm run without the
procedure, respectively. Bold represents the best value. The initial threshold
and the relaxation of 0.5 and 0.8 are used for the algorithm run with the
threshold relaxation procedure. We use the static threshold of 0.0125 for the
algorithm run without the proposed procedure.

solver while exploring significantly fewer nodes. The use of
imitation learning allows us to learn the solver with less
training compared to the other methods [17, 18, 21].

Table IV shows the performance of the machine learning al-
gorithm with and without the Threshold Relaxation procedure.
We find that normally, the algorithm is not able to generalize
well to the test problems if the problems in the test set are
significantly different than the problems in the training set.
However, with the iterative relaxation of the threshold, the
algorithm is able to solve the problem. This ability comes at

the expense of the total numbers of nodes explored. In any
case, since the threshold can be relaxed iteratively to 0, which
corresponds to all the nodes visited, our algorithm guarantees
that all the problems are solved.

The performance of the GDF + GAT encoder-decoder Graph
Neural Network (GNN) compared to the individual layers
suggests that the complexity of deep learning algorithms can
improve performance. The improved performance might be a
good tradeoff to the model complexity in some cases when
Graphical Processing Units (GPUs) resources are available.
However, the TR procedure used in this paper should enable
using classifiers with lower complexity since the thresholds
are automatically adjusted depending on the problem.

The efficacy of our procedure can be explained by the
fact that other similar works on different problems utilize a
significantly higher number of iterations to solve the problems
(in the order of 10 5 ). In our case, while the procedure
cannot solve most problems using only the training data,
the Threshold Relaxation procedure introduced in this study
allows the problem to be solved with far fewer iterations.
While the network trained on fewer iterations can fail to
solve some problems which are significantly different than the
ones in the training set, the Threshold Relaxation procedure
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Figure 5. Results obtained on a test problem. The start point is 13 degrees latitude and 111 degrees longitude. The endpoint is 88 degrees latitude and 129
degrees longitude. The algorithm is optimized for minimum fuel cost during the voyage.

guarantees success in solving the problem in any domain,
which can even be different than the problems in the training
set. This is achievable since we lower the threshold till the
endpoint is met.

Note that the imitation learning used in this study tries
to build a model miming the Oracle (expert). One caveat of
this process is that the model can not outperform the expert.
The model, however, can perform a quick search close to the
optimum with a speedup compared to the traditional solvers.
This speedup is possible because the model does not need to
visit all the nodes if it does not need to verify that the solution
is optimal. The policy learned during the training phase of
imitation learning can later be used in a reinforcement learning
setting for further improvements. One limitation of our study
is that the weather forecasts are assumed to be deterministic,
which might not be, especially when encountering abnormal
ocean/wind waves. An obvious extension of our approach
would be to design a Partially Observed Markov Decision
Process (POMDP), which does not assume that the weather
information is complete. Moreover, a dynamic scheme similar
to the VISIR can account for weather forecasts updated during
the planning window.

VII. CONCLUSION

This paper introduces a Threshold Relaxation procedure
for neural networks for solving shortest-path problems, which
guarantees the success of reinforcement learning algorithms

trained in a supervised manner in different training and test
sets. This success is also guaranteed even when the problems
in the test set differ from those in the training set at the expense
of node exploration. This guarantee is possible since the
threshold can be lowered iteratively and nodes chosen till the
endpoint is reached in shortest-path problems. The Threshold
Relaxation procedure introduced in this paper also allows
the neural networks to be trained for a significantly fewer
number of epochs (200 in our case) while still guaranteeing
that all the problems in the test set are solved. In addition
to introducing a Threshold Relaxation algorithm, we have
also compared various graph neural networks and found that
combining Graph Attention Networks and Graph Diffusion
Networks achieves the best performance in the dataset used
in this study. Our study should be a benchmark for future
studies on the shortest-path weather routing of surface vessels.
Similarly, the Threshold Relaxation procedure introduced in
this study should apply to different domains in the usage of
neural networks to solve shortest-path problems at the expense
of optimality when the test set might be different from the
training set in supervised reinforcement learning problems.
This procedure is also applicable when the computational
capacity only allows the networks to be trained for fewer
epochs such that the network cannot fully generalize to a
problem domain.
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